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When sensory receptors are stimulated, a series of negative and

positive deflections time-locked to stimulus onset may be evoked in the

electroencephalogram (EEG). Since these potentials are evoked by sensory

stimulation, they are called sensory-evoked potentials (EPs). Because of

the small magnitude of the EP in relation to ongoing background noise, many

stimulus trials must be averaged to obtain a stable EP.
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' EP waveforms are quantitatively characterized in terms of components.

Unfortunately, there is no consensus in the field as to the formal

definition of a component (ref. i). For the paradigms discussed in this

paper, components are identified with specific positive and negative

deflections in the averaged EP. The deflections are labeled by their

polarity and order of appearance. Polarity of a deflection is either

positive or negative, denoted by the prefixes "P" or "N". NI, for example,

would be the first major negative deflection observed after presentation of

an auditory stimulus. N1 generally occurs about 100 milliseconds (ms) after

stimulus onset, and is for this reason sometimes labeled NIO). Labeling

components by their polarity and latency after stimulus onset ("NIO0",

"P300") is another frequently used convention in the EP literature.

EP components are functionally categorized into two types, exogenous

and endogenous. Exogenous components of the EP are primarily responsive to

properties of the stimulus, such as duration, intensity, and frequency.

Typically, exogenous components have short latencies (less than I00 ms after

stimulus onset). They usually originate from the primary sensory pathways

and projection areas. The morphology and scalp distribution of

exogenous components vary greatly between stimulus modalities, and are

relatively little affected by task demands.

Endogenous components of the EP vary with psychological factors such as

task relevance, expectancies, and task difficulty. EPs associated with

endogenous components are frequently referred to as event-related potentials

(ERPs). in this paper, the properties of a set of endogenous components,

the P3 complex, will be discussed. The P3, or P300, component has received

continued experimental attention since it was first reported by Sutton,

Braren, Tueting, Zubin and John (refs. 2 and 3). The P3 is a long latency,

endogenous component of the evoked potential which can be elicited by

auditory, visual, or somatosensory stimuli. In a typical paradigm, the P3

is evoked when a subject attends to rare target tones among a train of more

frequently presented non-target tones. P3 usually appears at a latency

between 250 and 800 ms after stimulus onset. It is generally preceded by a

negative deflection (N2) and followed by a deflection whose polarity varies

with scalp topography, the "Slow Wave" (ref. 4). These endogenous
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components are shown in Figure i. While N2 and P3 usually appear

sequentially, they are dissociable. The topography of N2 is modality

specific; that is, its peak amplitude appears at different locations on the

scalp depending on modality of stimulation (refs. 5 and 6). P3 shows a

modality non-specific scalp topography, with peak amplitude over the

parietal area of the scalp. N2 appears to a stimulus mismatch whether or

not the stimulus is task relevant, whereas the P3 response is attenuated or

absent under these conditions (ref. 7). The neural generators of P3 are not

known with any specificity. Evidence from depth electrode recordings and

correlations with magnetic fields suggest that medial temporal lobe and

frontal lobe structures may be involved (refs. 8 to i0).

This paper will address the responsivity of the N2 and P3 components of

the EP (the N2-P3 complex) to factors modulating human performance. The

first section reviews experimental factors and paradigms. The second and

third sections examine the effects of brain dysfunction and pharmacological

manipulations on the N2-P3 complex. The functional significance of the

N2-P3 complex and its utility as a tool for probing human performance will
then be discussed.

Factors Which Influence the N2-P3 Complex

Probability and Task Relevance

Variations in stimulus probability are associated with changes in N2-P3

amplitude (ref. 2). The effect of probability on P3 amplitude is enhanced

when the stimuli are task relevant (ref. Ii). When a stimulus is ignored,

the P3 deflection that occurs (P3a) may represent a different component from

the P3 deflection to a task-relevant stimulus (P3b) (ref. 4). A large P3

may be evoked without task demands when a rare tone is very disparate in

intensity and frequency from a frequent tone (ref. 12). Task relevant

stimuli are usually associated with N2-P3 activity even when the stimuli are

equiprobable in relation to the irrelevant stimuli (ref. 2). N2 amplitude

is less sensitive to task demands, suggesting that it may represent an

automatic match-mismatch detection process (ref. 7). The amplitude of P3 is

inversely related to stimulus probability, approximating its information

content as defined by classical information theory (-log2p) (ref. 13). P3

amplitude to a feedback signal regarding a previous judgment on a target

detection task is related to the joint probability of the initial stimulus

and the subject's response, termed outcome probability (ref. 14) or

contingent probability (ref. 13).

Sequential stimulus structure also contributes to N2-P3 amplitude. The

first stimulus of a series elicits a N2-P3 complex. A tone preceded by one

or more of the same tones shows diminished N2-P3 amplitude, and one preceded

by a series of differing tones shows larger amplitude responses (ref. 15).

K. Squires et al. (ref. 15) used a linear additive model defining expectancy

as a combination of decaying memory for events, structure sequence, and

global probability for up to fifth order stimulus sequences. The model

accounted for 78% of the variance of N2-P3 amplitude. Duncan-Johnson and

Donchin (ref. II) similarly found that global probability and sequential

structure had independent effects on the P3 complex.

In summary, global stimulus probability and stimulus sequence are
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important determinants of the amplitude of the N2-P3 complex. These effects
interact with the task-relevance of the stimulus. Task relevant stimuli

produce a N2-P3 complex, and the effect of probability is greatly enhanced

when stimuli are task-relevant. The joint effects of task relevance and

probability provide an example of the sensitivity of electrophysiological

measures to aspects of information processing and attentional reactivity not

readily apparent from traditional psychological paradigms.

Orienting response

Both N2 and P3 have been associated with the orienting response (refs.

7, 16 and 17). The orienting response is elicited by a variation in stimulus

properties, presumably because of a mismatch between the previous

representation of the stimulus and the physical properties of the current

stimulus. The response is manifested by a range of autonomic, somatic, and

EEG changes (ref. 17). The N2-P3 complex fits this model in its reactivity

to stimulus change and probability. It diverges from the classical

orientation response in its resistance to habituation, even over prolonged

periods of time (refs. 18 and 19). One difficulty in making comparisons

between the N2-P3 complex and the orienting response is that few studies

have used both autonomic and EP measures simultaneously in classical

orienting paradigms. A second difficulty is that experiments designed to

elicit the N2-P3 complex use short inter-stimulus intervals and task

relevant stimuli, while the orienting response classically has not been

associated with explicit task demands (ref. 20). A recent study by Rosier

(ref. 21) compared N2, P3, skin conductance and HR to rare and frequent

visual stimuli. The results indicated that these different response

modalities were related to different aspects of task demands and stimulus

properties. Rosier concluded the ensemble of autonomic and EP measures was

not part of a single orienting reflex, but rather was sensitive to

different stages of information processing. Late negative waves occurring

after the N2-P3 complex (Slow Wave, "0" wave, CNV) have been argued to be

more closely related to the orienting response (ref. 17 and 22).

N2-P3 and motor response

N2 latency, P3 latency, and reaction time (RT) tend to be correlated,

particularly when accuracy of response is stressed over speed of response

(ref. 23). The P3 component, however, occurs too late after stimulus onset

to be concurrent with stimulus discrimination and a precondition for

response selection and execution. Ritter and colleagues (ref. 24) have

argued that N2 is a better time marker for stimulus discrimination. Goodin

and colleagues (ref. 25), however, report data (using EMG onset as a measure

of reaction time)which suggest that N2 may also be too late in time to

directly index stimulus discrimination. It is possible that the processes

represented by N2 and P3, as well as response selection, are initiated in

parallel by early stimulus analysis, but the response selection is not

necessarily contingent upon N2-P3 related activities in the nervous system.

A recent experiment by Goodin and colleagues (ref. 26) demonstrated that P3

and an earlier endogenous component, P165 (Figure 1), were synchronized with

both stimulus appearance and response onset as measured by EMG activity,

while N2 was more synchronized with stimulus onset than response onset.

These results provide further evidence that N2 may represent an independent

process from P3, even though they appear sequentially in the averaged EP.
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Stimulus evaluation and signal detection

Stimulus evaluation. Stimulus intensity is inversely related to P3

latency (ref. 27). Increased difficulty of discrimination is associated

with increased N2 and P3 latency (refs. 28 to 32). Task demands which

increase the complexity of stimulus evaluation increase P3 latency and RT,

while task demands which increase the difficulty of response selection

increase RT latency without affecting P3 latency (ref. 32). Variations in

visual stimulus intensity, contrast, and complexity have additive effects on

P3 latency (ref. 31). These results have led several investigators to

propose that P3 latency provides an index of stimulus discrimination in the

nervous system (refs. 23 and 29). Because RT is not temporally contingent

on P3, however, it appears more likely that P3 latency represents further

processing of a stimulus contingent on initial discrimination, and parallel
to response selection.

Signal detection. The effects of observer sensitivity and decision

confidence on P3 latency have been studied by a number of investigators. N1

has been related to quantity of signal information received by the subject,

while P3 characteristics reflect decision confidence (ref. 33). P3

amplitude increases, and latency decreases, with increasing confidence for

correct detection (Hit) of a signal (refs. 34 to 36). In general, false

alarms, misses, and correct rejections in signal detection tasks are

associated with smaller amplitude P3s. P3 responses will occur to confident

false alarms (ref. 33). Correct rejections generate P3s only when signals

are highly detectable and signal-absent trials are rare (ref. 35). When

signals are of low detectability, probability of presentation has little

effect on P3 amplitude (refs. 34 and 35). In a study of signal detection

and recognition, P3 amplitude increased and latency decreased as a function

of both signal detection and recognition, while N1 only varied with signal
detection (ref. 36).

In summary, while P3 probably does not provide a direct marker for the

time of stimulus discrimination in the nervous system, it does provide a

sensitive measure of the process of stimulus evaluation. P3 latency

increases with difficulty of a discrimination. P3 amplitude, on the other

hand, reflects decision confidence related to both detection and recognition

of signal. The N2-P3 complex in conjunction with RT provides a powerful

paradigm for the chronometric analysis of stimulus processing, decision

processes and response generation in the human central nervous system (CNS).

Mental load

The findings that the amplitude of P3 was modulated by task relevance

and attentional focus, and signal its latency to stimulus evaluation led

investigators to link P3 amplitude to the conscious deploy_nent of limited

capacity processing resources (refs. 37 and 38). Several lines of research

are consistent with this formulation, and suggest that P3 is sensitive to

the mental load presented by a task.

The Stroop interference effect, which appears to be due to response

interference, prolongs RT without affecting P3 latency (ref. 39). Dual task

performance diminishes P3 amplitude on the primary task when the secondary

task makes demands on perceptual resources, though not when further demands
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are placed on elaboration of a response. RT is responsive to both types of

demands (refs. 40 and 41). Wickens and colleagues (ref. 38) hypothesized

that if processing resources allocated to a primary and secondary task

were reciprocal, this relationship should be reflected in variations in P3

amplitude to stimuli in both tasks. Using visual tracking as the primary

task, and an auditory oddball sequence as the secondary task, they compared

P3 amplitude to stimuli within each task. As the resource demands of the

primary task were increased, P3 amplitude evoked by primary task events

increased, whereas those elicited by the auditory stimuli used in the

secondary task decreased. A distinction between the responsivity of N2 and

P3 amplitude to task relevant and irrelevant workload was reported by Horst

and colleagues (ref. 42). When subjects were required to monitor multiple

visual readouts, increasing workload was associated with increased

negativity in the N2 region of the waveform, regardless of whether the

readout was currently task relevant. In the P3 regions of the EP, however,

increased workload only affected component amplitude to attended,

task-relevant stimuli.

Automatic and controlled processing in visual search tasks (ref. 43)

have also been investigated using EP and RT paradigms. N2-P3 amplitude was

comparable in automatic and controlled tasks in two studies, while both P3
and RT latencies were shortened in the automatic task (refs. 44 and 45).

Memory set size did have an effect on amplitudes, however: N2 amplitude was

smaller, and P3 amplitude larger, with increased memory set size (ref. 45).

These results suggest that practicing a controlled mapping task (comparing a

stimulus to a constant set of items in memory) may reduce the slope of

stimulus evaluation and reaction time on memory set size to zero, but the

task still requires perceptual resources for performance.

These initial studies suggest that P3 amplitude reflects the mental

demands on limited-capacity perceptual resources. In conjunction with RT

measures, it may provide a means of differentiating perceptual and response

related resource demands involved in performance of specific tasks.

Learning and Memory

P3 amplitude is enhanced to stimuli which are examples of an

infrequently occurring category in a series when the stimuli share no common

physical properties (refs. 23 and 46). Such results suggest that learned

categories in long term memory can be probed by N2-P3 responsivity. The

learning process has been experimentally investigated by requiring a subject

to learn, either intentionally or not, a set of items, and then measuring

the magnitude and latency of P3 of items correctly recognized or missed on a

subsequent exposure. P3s to recognized stimuli were larger in amplitude and

shorter in latency than those to unrecognized stimuli or distractors,

independent of relative probabilities. These results were interpreted to be

consistent with the hypothesis that recognized items are more familiar,

hence more discriminable, then unrecognized items (refs. 47 and 48). On

repeated learning tests, P3 latency becomes shorter and P3 amplitude larger

for correctly identified targets (ref. 48).

Several studies have examined whether P3 amplitude or latency to a

stimulus on initial exposure predicts subsequent recognition performance.

The hypothesis advanced by Donchin (ref. 49) that P3 reflects the process of

context or schema updating suggests that stimuli associated with enhanced P3
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activity should be more memorablethan those that are not. Tests of this
hypothesis have not led to consistent results. Sanquist et al. (ref. 47)
reported an apparent (but statistically untested) increased amplitude during
semantic processing of items which were later recognized. Fabiani, Karis
and colleagues (refs. 50 and 51) reported a similar effect, but only when
the subjects used a rote rehersal strategy, or no strategy at all, in the
process of learning the material; elaborative strategies produced no P3
enhancement. P3 latency, but not amplitude, on repeated exposures of a list
was shorter for words later recognized than to those that were not
recognized. This effect mayhave been due to increased familiarity and
discriminability of recognized words over repeated trials. In a continuous
recognition task, P3 amplitude on initial exposure has been found to be
predictive of later correct recognition (ref. 52). These results suggest
that the latency or amplitude of P3 response may predict later recognition
performance, although the nature and strength of this effect may be paradigm
specific.

Brain Dysfunction and the N2-P3Complex

The N2-P3 complex has been studied in relation to normal aging, in
psychopathology, and in neurological brain disorders. The most intensively
studied clinical populations include patients with dementing disorders,
schizophrenia, and depression. Variations of oddball paradigms, without or
without RT measures, have been the most frequently used EP tests. The P3
componenthas been the most generally measuredEP componentin these
disorders, although somestudies also report characteristics of other
components.

Aging

After adolescence, N2 and P3 latency show a continuous increase in
latency. The rate of prolongation is about 1 to 2 ms per year. A decrease
in P3 amplitude has also been reported (refs. 53 and 54).

Dementia

Dementing disorders such as Alzheimer's disease, multi-infarct
dementia, and Parkinson's disease are usually accompaniedby prolongation of
N2 and P3 (refs. 54 to 58).

Psychiatric disorders

Both N2 and P3 amplitudes have been consistently reported to be reduced
in amplitude in schizophrenia (refs. 59 to 63) and depression (refs. 55 and
61). N2and P3 latency are usually reported to be within normal limits in
these disorders, although there have been reports of mild slowing in
schizophrenic patients (refs. 55 and 63). Since N2 and P3 latency are
usually within normal range in schizophrenia, while RT is slowed, this
particular type of psychopathology mayreflect disturbances of response
selection and execution more than stimulus evaluation (ref. 64).
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Correlation of N2-P3 with Neuropsychological Measures

FewEP studies provide behavioral or intellectual descriptions of
patient groups beyond diagnosis. In the case of dementia, groups under
study were often heterogeneous in diagnosis as well as severity. Specific
intellectual or psychiatric disturbances relevant to such constructs as
attention, learning, or degree of depression are seldom measuredor
correlated with specific EP changes. Consequently, the specific behavioral
referents of variations in the N2-P3complex due to brain dysfunction remain
to be elucidated. Several recent studies of Parkinson's disease, a
neurological disorder associated with varying degrees of motoric,
intellectual, and psychiatric disturbance, have examined such patterns. The
latency of P3 in Parkinson's disease is correlated with mental tests
requiring cognitive effort and learning, and is less related to general
measuresof IQ, immediate memoryspan, depression or motor dysfunction
(refs. 57 and 58). These results suggest that N2 and P3 changesassociated
with brain dysfunction mayindex specific types of cognitive and behavioral
disturbance, in the sameway that N2and P3 characteristics in experimental
paradigms vary with specific types of task demands.

Summary

The N2-P3 complex is delayed over the course of normal aging, and

further delayed in dementing disorders associated with diffuse brain damage.

In Parkinson's disease, P3 latency changes correlate with deficits in

learning and tasks requiring cognitive effort. Psychiatric disorders, on

the other hand, are consistently associated with reduction in N2-P3

amplitude, with relatively normal component latencies. This pattern of

results may indicate that N2-P3 latency prolongation is a marker for

clinically significant slowing of mental processes, or memory deficits,

while diminished amplitude is associated with disorders affecting attention,

motivation or arousal. The finding that seizure patients show increased P3

amplitude is consistent with the notion that P3 amplitude is a measure of

CNS arousal (ref. 65).

Pharmacological Effects

The N2-P3 complex is differentially reactive to CNS stimulants and

anticholinergic agents. Methylphenidate speeds RT without affecting P3

latency in young adults and children with attention disorders. This pattern

suggests that methylphenidate speeds response generation, but does not

affect stimulus evaluation processes (ref. 66). D-amphetamine, on the other

hand, reduces both P3 latency and RT latency. These effects were not

reduced by administering propranalol (ref. 67). The effect of d-amphetamine

on P3 latency did not interact with stimulus complexity.

Scopolamine, an anti-cholinergic agent, slows both P3 and RT latency

(ref. 66). At high levels, scopolamine abolishes P3 response and causes

severe learning deficits, despite accurate task performance and retained

immediate memory span (ref. 68).

These results again demonstrate the power the N2-P3, in conjunction

with reaction time, to provide chronometric probes of the locus of variation

in human performance. The effects of anti-cholinergic agents on the N2-P3
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complex suggest that N2-P3 slowing mayreflect breakdownin attentional and
learning processes, similar to its significance in clinical disorders of the
CNS.

The Cognitive Significance of the N2-P3 Complex

The P3 component has been described as indexing uncertainty (ref. 2),

significance, information delivery (ref. 3), orienting (ref. 16) expectancy

(ref. 15), equivocation (ref. 69), stimulus evaluation (refs. 23 and 29),

context or schema updating (ref. 49), and value or meaning (ref. I). This

multiplicity of hypotheses regarding the functional significance of P3

reflects the diverse range of experimental manipulations which can affect P3

amplitude, latency, or both features. As is evident from the preceding

review, the N2 component is reactive to many of the same factors as P3,

although it may represent a more automatic phase of stimulus evaluation.

Donchin (ref. 49) suggested that the P3 component may represent the CNS

equivalent of a subroutine, which is invoked in a variety of cognitive

operations. Alternatively, since the P3 may not consist of a single

component, but rather the sum of a number of components overlapping in time

(ref. i), the characteristics of the P3 complex may index more than a single
CNS function.

A model of P3 amplitude which assumes multiple determinants has been

developed by Johnson (1986). Johnson (ref. 70) proposed that P3 amplitude

is determined by three factors: subjective probability, stimulus meaning,

and information transmission. Subjective probability is a joint function of

global and sequential expectancies, as previously modeled by K. C. Squires

and colleagues (ref. 15). Stimulus meaning is a function of task

complexity, stimulus complexity, and stimulus value. Johnson proposed that

subjective probability and stimulus meaning have an additive relationship,

while both have a multiplicative relationship with information transmission.

He makes the intriguing suggestion that subjective probability is an

automatic process, while stimulus meaning is a controlled process.

The Assessment of Human Performance

The utility of the N2-P3 complex as a probe of CNS processes associated

with stimulus evaluation, attentional variation, and mental load has been

repeatedly demonstrated over the past two decades. Clinical and

pharmacological evidence suggests that these measures are also sensitive to

global changes in the information processing capacity of the CNS due to

brain dysfunction. The effect of common stressors on human performance,

such as fatigue, boredom, noise, or sleep deprivation on the N2-P3 complex

has received much less attention. Further research is needed to elucidate

how such stressors impact on the N2-P3 complex, and how this impact

influences task performance. The inclusion of subjective measures of mood,

arousal, and personality as setting variables in experiments may permit the
development of multifactorial models of the determinants of

psychophysiological response. Unlike machine information processing

systems, human performance is modulated by biological and personality

factors. Psychophysiological measures may provide markers for such
influences.
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In the evaluation of humanperformance, behavioral and subjective
measuresof performance are readily available. As Donchin (ref. 71) has
argued, given the constraints and costs imposed by EP assessment of CNS
function, EPs should be used only whenthey provide information which is not
easily available from traditional indices of performance. The foregoing
review of the N2-P3 complex suggests several applications in which unique
information can be derived from EP measurement.

i. Evaluation of the time course of stimulus evaluation processes as
distinct from response selection and execution.

2. Electrophysiological assessmentof the attentional impact of
infrequent events.

3. Measurementof workload specifically related to perceptual
capacity. The auditory oddball task provides a relatively unobtrusive
measureof secondary task processing. In addition, P3 amplitude may provide
a direct measureof perceptual workload.

4. Characterizing the salience of events to an operator without
requiring a behavioral response.

5. Identifying the time points in sensory and perceptual processing
whenpharmacological manipulations becomeeffective.

6. Assessing the integrity of brain function.

Methodological Considerations

EP componentidentification and analysis

A variety of analytic techniques have been used to identify and measure
componentsof the N2-P3 complex. The lack of consensuson identification
and quantitative characterization of EP components, and the difficulty of
discriminating variations in the latency of these componentsfrom single
trials, has been a cause of continued concern and the application of diverse
analytic techniques to EPs. (See Sutton and Ruchkin, 1984(ref. i), for an
excellent discussion of the problemsof componentdefinition.) Popular
analytic approachesinclude Woodyfiltering, subtraction waveforms, digital
filtering, principal componentsanalysis, peak-picking, and single-trial
latency adjustment. Despite the obvious methodological concerns
demonstrated by investigators, however, the experimental and clinical
effects reviewed above are remarkably robust.

The most serious problem in reviewing and integrating studies in the
literature is not, in the opinion of this reviewer, the difficulty in
identifying the central phenomenaof interest (although mapping the N2-P3
complex onto experimental factors and mental functions remains a vigorous
and productive enterprise after two decadesof activity). Rather, it is the
tendency of experimenters to focus a priori on componentsof interest, and
ignore other potentially informative componentsin the EP waveforms.
Consequently, it is not unusual to read studies involving similar
experimental manipulations which focus on P3 measures, and ignore earlier
components, or conversely, measureearly components, such as processing
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negativities, without measuring later components. As a basic guideline,

given the differential reactivity of EP components to stimulus properties

and task demands, the major components of the N2-P3 complex (N2, P3, Slow

Wave) should be measured, as well as at least one representative exogenous

component (e.g. PIO0 with visual stimuli; N1 with auditory stimuli).

Averaged EPs for each experimental conditions should be displayed before

transformations such as principal components analysis are used. Indices of

behavioral performance should be used in conjunction with EP responses when

variations in task demands occur that may impact on response selection. A

survey of papers presented at the Eighth International Conference on

Event-Related Potentials of the Brain (ref. 72) suggests the field is moving

toward greater specificity of measurement applied over the entire recorded

EP epoch.

Ecologically Valid Experiments

The first phase of N2-P3 investigations, extending from perhaps 1965 to

1980, generally used stimuli with simple physical properties (e.g. tones,

clicks, simple figures) and varied the stimuli on precise dimensions (e.g.

intensity, probability, frequency). The benefit of this approach was a high

degree of replicability across different laboratories, and the easy

application of psychophysical, signal detection, and information processing

paradigms. Moreover, since information processing was the dominant model of

interpretation, semantic qualities of stimuli were not easily incorporated

into analysis. Since the late 1970s, however, increasingly complex

linguistic and visual stimulus paradigms have been utilized, presumably as

consequence of investigators' confidence in their understanding of the basic

characteristics of the N2-P3 complex. As the functional characteristics of

these components have become understood, they have begun to be used as a

tool for the understanding of mental processes, rather than being the

explicit object of inquiry in an experiment. The evolution of EPs from an

object of inquiry to a tool of inquiry has important implications for the

investigation of human performance. Until this evolution occurred,

application of EP measures to task analysis in engineering psychology would

be a uninterpretable.

Developing more naturalistic tasks and environments will be an

important step in using EPs to probe the CNS mechanisms modulating human

performance. The constraints of EP analysis (the use of electrodes,

electrical shielding, physiological amplifiers, analog or digital

recording), the need for many trials to accrue an interpretable average, and

the short time window of investigation limit the applicability of this

technique. When the technique can be applied to a task, the stimuli,

temporal frame, and environmental context should be as close as possible to
the performance environment of interest.

Prediction of performance

The N2-P3 complex has usually been correlated with behavioral measures

recorded concurrently in time. Prediction of subsequent human performance

levels has seldom been a focus of investigation. It would be of great

interest if properties of the N2-P3 complex might reflect an individual's

general attentional or cognitive capabilities, and whether alterations in

the N2-P3 complex in a serial task might reflect the probability of
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subsequent lapses in attention. The sensitivity of the N2-P3 complex to
brain dysfunction in clinical populations suggests it might showa similar
sensitivity to diffuse changes in the CNSsystem in healthy individuals
under unusual stress.

Summary

Twodecades of productive research have demonstrated that the N2-P3
complex, and other endogenouscomponentsof the humanEP (ref. 73), provide
a set of tools for the investigation of humanperceptual and cognitive
processes. These multidimensional measuresof CNSbioelectrical activity
respond to a variety of environmental and internal factors which have been
experimentally characterized. Their application to the analysis of human
performance in naturalistic task environments is just beginning. Converging
evidence suggests that the N2-P3 complexreflects processes of stimulus
evaluation, perceptual resource allocation, and decision-making that proceed
in parallel, rather than in series, with response generation.

Utilization of these EP componentsmayprovide insights into the CNS
mechanismsmodulating task performance unavailable from behavioral measures
alone. The sensitivity of the N2-P3complexto neuropathology,
psychopathology, and pharmacological manipulation suggests that these
componentsmight provide sensitive markers for the effects of environmental
stressors on the humanCNS.
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Figure i. Evoked potentials averaged from frequent IO00 Hz tones and rare

target 2000 Hz tones (probability = .i0). Frequent tones elicit the NI-P2

components, while rare tones elicit both the NI-P2 and endogenous N2-P3

components. Subtraction of waveforms generated by rare tones from frequent

tone waveforms isolates the endogenous components (P165, N2, P3a, P3b, and

Slow Wave).
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